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Motivation o WYOMING

High order methods in aerodynamics

Higher accuracy with fewer degrees of freedom
Fewer elements needed

Nodal Discontinuous Galerkin finite elements

Cartesian Setting-Higher efficiency per degree of freedom



Governing Equations UNIVERSITY

ot WYOMING
Compressible Navier-Stokes equations
oUp n OF mi _0
ot Ox;
Conservative variables U = {p, pu, pv, pw, pE}T
pu pv pw
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DG Formulation ot WYOMING

Multiply by test function and integrate

/ v, (‘w’" + 8Fm"> dQ = / v,S,.dQ
Q ot ox; Q

Integrate by parts

Ry = / \Ur% - V,S5, — %Fmi dQ+/ vV, Fo,m;dl =0
Q Bt 8X,' r

Inviscid flux: Lax-Friedrichs and Roe

Viscous flux: symmetric interior penalty (SIP)
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Tensor Basis Functions ot WYOMING

Letting W, = ¢§1¢§?¢5i fori,j,k=0,---, M and solution
iS5
expansion coefficients a, written as:

M M M
Un(60 =33 autogogog
k=0 j=0 i=0
Let ¢¢; = L;, the 1-D Lagrange polynomial using the
Gauss-Legendre quadrature points.

“1
[m] o
[m) o
[m] o
o o o o o
[m] o [m] o [m]




UNIVERSITY

Solver Capabilities o WYOMING

e Nodal Discontinuous Galerkin Finite Elements
- solution coefficients are the solutions at the quadrature
points — mass matrix is diagonal



UNIVERSITY

Solver Capabilities o WYOMING

e Nodal Discontinuous Galerkin Finite Elements
- solution coefficients are the solutions at the quadrature
points — mass matrix is diagonal
- dense kernels
— block matrix coupling is contained within an
element—all DOF close in memory



UNIVERSITY

Solver Capabilities o WYOMING

e Nodal Discontinuous Galerkin Finite Elements
- solution coefficients are the solutions at the quadrature
points — mass matrix is diagonal
- dense kernels
— block matrix coupling is contained within an
element—all DOF close in memory
- suited for massively parallel HPC type architectures



UNIVERSITY

Solver Capabilities o WYOMING

e Nodal Discontinuous Galerkin Finite Elements
- solution coefficients are the solutions at the quadrature
points — mass matrix is diagonal
- dense kernels
— block matrix coupling is contained within an
element—all DOF close in memory
- suited for massively parallel HPC type architectures
- use coarser grids
— overhead for AMR reduced and grid related issues



UNIVERSITY

Solver Capabilities o WYOMING

e Nodal Discontinuous Galerkin Finite Elements
- solution coefficients are the solutions at the quadrature
points — mass matrix is diagonal
- dense kernels
— block matrix coupling is contained within an
element—all DOF close in memory
- suited for massively parallel HPC type architectures
- use coarser grids
— overhead for AMR reduced and grid related issues
e Cartesian framework

- dx#dy # dz



UNIVERSITY

Solver Capabilities o WYOMING

e Nodal Discontinuous Galerkin Finite Elements
- solution coefficients are the solutions at the quadrature
points — mass matrix is diagonal
- dense kernels
— block matrix coupling is contained within an
element—all DOF close in memory
- suited for massively parallel HPC type architectures
- use coarser grids
— overhead for AMR reduced and grid related issues
e Cartesian framework
- dx#dy # dz
- element Jacobians become simple scalar multiplications



UNIVERSITY

Solver Capabilities o WYOMING

e Nodal Discontinuous Galerkin Finite Elements
- solution coefficients are the solutions at the quadrature
points — mass matrix is diagonal
dense kernels
— block matrix coupling is contained within an
element—all DOF close in memory
suited for massively parallel HPC type architectures
use coarser grids
— overhead for AMR reduced and grid related issues
e Cartesian framework
- dx#dy # dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish



UNIVERSITY

Solver Capabilities o WYOMING

e Nodal Discontinuous Galerkin Finite Elements
- solution coefficients are the solutions at the quadrature
points — mass matrix is diagonal
- dense kernels
— block matrix coupling is contained within an
element—all DOF close in memory
- suited for massively parallel HPC type architectures
- use coarser grids
— overhead for AMR reduced and grid related issues
e Cartesian framework
- dx#dy # dz
- element Jacobians become simple scalar multiplications
- several components of the governing equations vanish
e Polynomial degree of p=63
- Restricted by CPU RAM on computing nodes (p=15)
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64th Order Solution ot WYOMING
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64th Order Solution B o WVYOMING
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Solver Capabilities Cont. S WYOMING

e Explicit time stepping through Method of Lines
- Forward Euler
- 4th-order explicit Runge-Kutta
- Low-storage Runge-Kutta 3rd Order (near future)

!Design of a Variational Multiscale Method for Turbulent Compressible Flows
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Solver Capabilities Cont. S WYOMING

e Explicit time stepping through Method of Lines
- Forward Euler
- 4th-order explicit Runge-Kutta
- Low-storage Runge-Kutta 3rd Order (near future)
* explicit time step consistent with Laslo Diosady and
Scott Murman'

ot = min(s*h hz)
4(|[Ul[ +¢) v

min(dx, dy, dz)
(p+1)2°
S = Number of Stages

e Parallel through MPI

!Design of a Variational Multiscale Method for Turbulent Compressible Flows
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Validation Results: Ringleb Flow B .\ VOMING

Problem Description?
Governing equations: 2D Euler equations with v = 1.4

*http://www.as.dlr.de/hiocfd /case_c1.2.pdf



Validation Results: Ringleb-Rho

UNIVERSITY

or WYOMING
P 1 2 4 6 9
Slope | 1.975562 | 3.056287 | 4.90858 | 7.016717 | 9.259090

sssssssssssssssss

rho

Mesn Sizeh



Validation Results: Ringleb-Rho

UNIVERSITY

or WYOMING
P 1 2 6 9
Slope | 2.000943 | 2.912026 | 4.860378 | 6.937690 | 10.51220

Mesn Sizeh



Validation Results: Ringleb-Rho

UNIVERSITY

or WYOMING
P 1 2 4 6 9
Slope | 1.804886 | 2.877250 | 4.990545 | 7.481386 | 9.754523

Mesn Sizeh



Validation Results: Ringleb-RhoE

UNIVERSITY

or WYOMING
P 1 2 6 9
Slope | 1.974541 | 2.998977 | 4.906502 | 6.895422 | 9.141250

Mesn Sizeh
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Validation Results:Taylor Green Vortex o WYOMING

Problem Description®

Domain:
Mo

Re

Pr

u

v

w

p

Mesh: 64x64x64
p = 4 (5th order)
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0.71
Vosin(x/L)cos(y/L)cos(z/L)
—Vocos(x/L)sin(y/L)cos(z/L)
0

= % (cos(2x) + sin(2y)) (cos(2z) + 2)
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*http://www.as.dlr.de/hiocfd /case_c3.5.pdf
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Validation Results:Taylor Green Vortex OF\W\/OMIN\é

Taylor Green Vortex, Re=1600
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Validation Results:Taylor Green Vortex OF\W\/OMIN\é

Taylor Green Vortex, Re=1600

—— Speciral
—— 5th Order
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Validation Results:Taylor Green Vortex OF\W\/OMIN\é

Taylor Green Vortex, Re=1600

—— Speciral
—— 5th Order

Enstrophy
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Timing Results o WYVOMING

All results are computed in serial on Intel Xeon E5-2670 processors
with a clock speed of 2.6Ghz and 2GB per core memory.
e Mount Moran TAU benchmark = 7.2 sec

Mount Moran Specs:

e 93.92 Tflops cluster serving the University of Wyoming

e 218 nodes with 2, eight-core Intel Xeon E5-2670 Sandy Bridge
processors on each node (3,488)



Timing Results: 3D Euler

UNIVERSITY

ot WYOMING
DOF=(number of fields)(p 4 1)* NxNyNz
Three-dimensional Euler Equations
Code Order DOF Mesh Size Time/Res/DOF
Finite Difference 1 5,151,505| 100 x 100 x 100 | 5.39e-8
Finite Difference 3 5,151,505| 100 x 100 x 100 | 8.37e-8
Finite Difference 5 5,151,505| 100 x 100 x 100 | 1.14e-7
DGSEM 2 5,000,000 50x50x50 7.77e-8
DGSEM 3 4,851,495 | 33x33x33 6.54e-8
DGSEM 4 5,000,000 | 25x25x25 6.33e-8
DGSEM 5 5,000,000 20x20x20 6.38e-8
DGSEM 6 5,306,040 | 17x17x17 6.57e-8
DGSEM 7 4,705,960 | 14x14x14 6.92e-8
DGSEM 8 4,423,680 | 12x12x12 7.36e-8
DGSEM 9 4,851,495 | 11x11x11 7.57e-8
DGSEM 10 5,000,000 10x10x10 7.83e-8
DGSEM 16 4,423,680 | 6x6x6 1.03e-7
DGSEM 24 4,423,680 | 4x4x4 1.35e-7
DGSEM 32 4,423,680 | 3x3x3 1.78e-7
DGSEM 48 552,960 | 1x1x1 2.41e-7




Timing Results: 3D Euler

CPU Time/Res/DOF (seconds)

3D Euler Equations: Finite Difference vs DGSEM

UNIVERSITY
o WYOMING
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Timing Results: 3D Euler S WYOMING

-8 3D Euler Equations: Finite Difference vs DGSEM
13 T T T T

—e— Finite Difference
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At 5th order, DGSEM is ~twice as efficient!



Timing RGSUltS: Cartesian 3D Navier-Stoke

DOF=(number of fields)(p + 1)> NxNyNz

Three-dimensional Compressible Navier-Stokes Equations
Code Order DOF Mesh Size | Time/Res/DOF
DGSEM 2 5,000,000 | 50x50x50 | 2.74e-7
DGSEM 3 4,851,495 | 33x33x33 | 2.59e-7
DGSEM 4 5,000,000 | 25x25x25 | 2.45e-7
DGSEM 5 5,000,000 | 20x20x20 | 2.68e-7
DGSEM 6 5,306,040 | 17x17x17 | 2.97e-7
DGSEM 7 4,705,960 | 14x14x14 | 3.25e-7
DGSEM 8 4,423,680 | 12x12x12 | 3.30e-7
DGSEM 9 4,851,495 | 11x11x11 | 3.63e-7
DGSEM 10 5,000,000| 10x10x10 | 3.87e-7
DGSEM 16 4,423,680 | 6x6x6 8.30e-7

UNIVERSITY
o WYOMING




Timing RGSUltS: Cartesian 3D Navier-Stoke Lj&;éﬁ};é

DGSEM: 3D Navier-Stokes
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Laslo Diosady and Scott Murman = 1.5’ (non-Cartesian) *
F. Hindenlang, G. Gassner ~ 4.0e~’ (non-Cartesian) °

*Design of a Variational Multiscale Method for Turbulent Compressible Flows
®Explicit Discontinuous Galerkin methods for unsteady problems
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Results: Parallel Scalability S WYOMING

e Strong Scalability
e Computed on Mount Moran and Yellowstone

e Taylor-Green Vortex
MPI Implementations:

e MPI Cartesian Topology

e MPI Derived Data Types

- MPI_Type_Contiguous (x-y plane faces)
- MPI_Type_Vector (x-z and y-z plane faces)
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Yellowstone Strong Scalability Results o WYOMING

Following results are computed in parallel on Intel Xeon E5-2670
processors with a clock speed of 2.6Ghz and 2GB per core memory.
eYellowstone TAU benchmark = 8.4 sec

Yellowstone Specs:

e 1.504-petaflops peak IBM iDataPlex cluster

e 2.6-GHz Intel Xeon E5-2670 (Sandy Bridge) processors with
Advanced Vector Extensions (AVX), 8 flops per clock (72,576)
e 144 58 TB total system memory
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Results: Strong Scalability P = 4 WY OMING

Mesh Size: Nx=128, Ny=128, NZ=128
DOF(total)= 1,310,720,000
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 4

# Procs DOF per Proc Efficiency
1024* 1,280,000 1.0000
2048 640,000 0.9801
4096 320,000 0.9327
8192 160,000 0.9037
16384 80,000 0.8358

*Assumed Perfect




UNIVERSITY

Results: Strong Scalability P = 7 WY OMING

Mesh Size: Nx=128, Ny=128, NZ=128
DOF (total)= 5,368,709,120
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 7

# Procs DOF per Proc Efficiency
1024* 5,242,880 1.0000
2048 2,621,440 0.9923
4096 1,310,720 0.9793
8192 665,360 0.9580
16384 327,680 0.9210

*Assumed Perfect
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Results: Strong Scalability P = 9 WY OMING

Mesh Size: Nx=128, Ny=128, NZ=128
DOF(total)= 10,485,760,000
DOF=(number of fields)(p + 1)3NxNyNz

Yellowstone Strong Scaling Results: P = 9

# Procs DOF per Proc Efficiency
1024* 10,240,000 1.0000
2048 5,120,000 0.9877
4096 2,560,000 0.9768
8192 1,280,000 0.9633
16384 640,000 0.9340

*Assumed Perfect
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Results: Parallel Scalability S WYOMING
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Future Work: Short Term Goals ™ wvominG

e Adaptive 3D Discontinuous Galerkin Navier-Stokes Solver
- Tamrex3DG = TeXsor3DG + SAMRAI

— analogous version of SAMARC
— different solution orders on different blocks

e 3D Navier-Stokes Dual Mesh/Dual Flow Solver
- analogous version of HELIOS
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Future Work: Short Term Goals cont. ot WYOMING

3D Navier-Stokes Dual Mesh/Dual Flow Solver

Domain Connectivity

Near-body Solver Off-body Solver
NSU3D DG3D Tamrex3DG

f—%

TeXsor3DG SAMRA!
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Future Work: Long Term Goals WY OMING

Use Tamrex3DG in HELIOS?

Dynamic LES Model
- possible dealiasing required

Particle Tracking
- implement scalar equation

Newton Implicit Solver

Discrete Adjoint for design optimization and driver for AMR
GPGPU version of TeXsor3DG



UNIVERSITY

Special Thanks! o WYOMING

Jay Sitaraman-University of Wyoming (Helios)
Andy Wissink-Army Aviation Development Directorate
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Thanks! ot WYOMING

e Office of Naval Research: ONR Grant N00014-14-1-0045 (Program
Manager: Judah Milgram)

e Army Aviation Development Directorate

e High-performance computing support from Yellowstone
(ark:/85065/d7wd3xhc) provided by NCAR's Computational and
Information Systems Laboratory, sponsored by the National Science
Foundation

e University of Wyoming Advanced Research Computing Center
e NASA Ames




Questions? UNIVERSITY
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